# 機械 · 材料 · 海洋系学科

機械・材料・海洋系学科は、自然環境との調和および資源の有効利用をはかりつつ、産業の発展とヒューマンライフの向上を 持続的に行うため、人類の英知として蓄えられた科学・技術を発展させ、基盤領域から先進領域にわたる学術分野で、独創性豊 かな技術者、研究者を育成する。そのために、機械工学、材料工学、および海洋空間のシステムデザインに関する体系的教育と、 基礎から応用にまたがる幅広い研究を行う。

機械・材料・海洋系学科は、学士(工学)の学位を授与する教育課程プログラムとして、機械工学教育プログラム(Education Program, EP)、材料工学教育プログラム(EP)、海洋空間のシステムデザイン教育プログラム(EP)から構成されている。

## (1)教育の流れ

本学科を構成する機械工学 EP, 材料工学 EP, 海洋空間のシステムデザイン EP では, 1・2 年次に工学の基礎となる数学と物理を中心に学習するとともに, 情報技術を修得し, これを柔軟に応用する能力を培う。また, 全学教育科目を通じて, 社会に貢献できる人格の養成と, 国際性の素養を身につける。また幅広い専門分野に対応できる工学の基礎的な能力を養成するとともに, 各自が所属する EP に応じた基盤領域の科目を体系的に修得する。

3・4年次には、2 年次までに学習した専門科目の内容を深化させ、さらに学習内容を柔軟に統合・応用・展開する能力の養成を行う。また、専門の分野における課題解決能力・コミュニケーション能力を涵養する。さらに各研究室に配属され、卒業研究で最先端の研究課題に取り組むことにより、これまでに学習した内容を集大成し、専門分野において、主体的に活躍できる能力を培う。

## (2) 履修登録単位数の上限

履修登録できる単位数には、指定科目を除き上限がある。ただし上限緩和措置適用者に対してはこの制限を緩和する。詳細は、各EPの「履修登録単位数の上限」の項を参照のこと。

## (3) 成績の扱い

詳細は、各 EPの「成績の扱い」の項を参照のこと。

### (4) 大学院への飛び入学

成績が極めて優秀な学生は、3 年次に大学院の入学試験を受験し、大学院に飛び入学する制度がある。詳細は各 EP の教務・厚生委員に相談すること。

### (5) 卒業要件

詳細は、各EPの「履修基準」の項を参照のこと。

## 機械工学教育プログラム

機械工学は、機械ならびに機械システムを対象とする工学分野の一つである。機械工学が対象とする範囲は、機械部品単体から、それらが組み合わされて複雑な機能を発揮する機械システムまで幅広く、機械工学に関わる技術者には基盤領域の堅固な素養と柔軟な適応力が求められる。本教育プログラムでは、学士課程の教育として基盤領域の教育を重視しており、機械工学の基礎を体系的に教育し、多様な分野で活躍できる資質を備えた人材を養成する。

## (1) 学習·教育目標

## 育成人材像

機械工学における基盤的素養と柔軟な適用力を有し、専門的課題を理解し解決する力とコミュニケーション力を備えた実践的能力を身に付け、多様な分野で国際的に活躍できる資質を備えた人材を養成する。

## 学習・教育(到達)目標

- (A) 真に人類・社会に貢献できる人格を養成する。
  - [A1] 広い学問領域に触れることによって,人類の幸福・福祉に貢献できる能力
  - [A2] 外国語や教養科目の履修を通じて異なる文化を理解し、多面的に物事を考える能力
  - [A3] 国際的に活躍するためのコミュニケーションの基礎的な能力
- (B) 社会における工学の役割を正しく理解する能力を養成する。
  - [B1] 科学技術が自然現象や人間社会とどのように関わっているかを理解できる能力
  - [B2] 自立した技術者として責任をもって行動できる能力
- (C) 幅広い専門分野に対応できる工学の基礎的能力を養成する。
  - [C1] 数学や物理学などの自然科学と情報技術の知識を修得し、これらを応用できる能力
  - [C2] 工学基礎および機械工学の基盤領域である材料力学, 熱力学, 流体力学, 機械力学, 自動制御を体系的に修得し, これらを応用できる能力
- (D) 社会での実践を志向して専門の工学的能力を養成する。
  - [D1] 機械工学分野に関連する専門技術の知識を修得し、これらを柔軟に応用・展開する能力と、技術の進歩に対応し、自主的かつ継続的に学習できる能力
  - [D2] 工学的考え方を利用して問題解決に応用できる解析・設計・コミュニケーションの能力
  - [D3] いかなる環境の下でも周到な計画に基づいて問題解決に取り組み、まとめる能力
  - [D4] グループで取り組む課題を通じて,チームで目的を達成する能力

### (2) 教育の流れ

1年次には、工学の基礎となる数学と物理を中心に学習するとともに情報技術を修得し、これを柔軟に応用する能力を培う。さらに全学教育科目の履修を通じて、社会に貢献できる人格の養成と、国際性の素養を身につける。また、1年次秋学期から3年次春学期にかけて、機械工学の基盤科目である材料力学、熱力学、流体力学、機械力学、自動制御を体系的に履修する。これにより、機械工学の基盤領域である材料と構造、エネルギーと流れ、運動と振動、情報と計測・制御、設計と生産・管理の5分野における基礎学力を養成する。

2年次では、幅広い専門分野に対応できる工学の基礎的な能力を養成するとともに、機械要素設計製図の履修によりエンジニアリングデザインの導入教育を行う。

3年次には、2年次までに学習した専門科目の内容を深化させ、機械工学分野の専門知識を柔軟に応用・展開する能力を身につける。また、応用機械設計製図ならびに機械工学実験の履修により、実験・プロジェクト等の計画・遂行能力、チームによる課題解決・コミュニケーション能力、工学的解析・考察能力を涵養し、機械工学の実践力を身につける。

4年次には各研究室に配属され、卒業研究で最先端の研究課題に取り組むことにより、これまでに学習した内容を集大成し、機械工学分野における諸問題を周到な計画の下に主体的に解決できる能力を培う。

### (3) 履修登録単位数の上限

機械工学教育プログラムでは次の表に示すように、一学期に履修登録できる単位数に上限が設定されている。その上限単位数を超えて履修登録することはできないので注意すること。ただし、表に示された科目は上限単位数の計算に含まれない。また、1年次秋学期からは、履修登録する直前の一学期の成績のGPAが2.5以上の学生は、上限単位数の設定が26単位に緩和される。

履修登録単位数上限\*1

| 年次            | 1 年                                         | 1 年次 2 年次                                       |        |          | 3 年    | F次        | 4 年次*2  |       |  |
|---------------|---------------------------------------------|-------------------------------------------------|--------|----------|--------|-----------|---------|-------|--|
| 学期            | 春学期                                         | 秋学期                                             | 春学期    | 秋学期      | 春学期    | 秋学期       | 春学期     | 秋学期   |  |
| 上限単位数         | 24                                          | 24                                              | 22     | 22       | 20     | 20        | 14      | 14    |  |
| 上限が緩和された場合    | _                                           |                                                 |        |          | 26     |           |         |       |  |
| 単位上限の計算に含まれない | 健康スポー                                       | 健康スポーツ演習 B*3, コンピューティング演習, コンピュータ科学入門, 機械系の数学演習 |        |          |        |           |         |       |  |
| 科目名           | Ⅰ,機械系の数学演習Ⅱ,機械系の力学演習Ⅰ,機械系の力学演習Ⅱ,物理実験,化学実    |                                                 |        |          |        |           |         |       |  |
|               | 験,計算工                                       | 学基礎,機                                           | 械要素設計  | 製図 I , 機 | 械要素設計  | 製図Ⅱ,機材    | 戒加工実習,  | 工学基礎  |  |
|               | 実験Ⅱ,機                                       | <b>械</b> 工学実験                                   | ₹I,機械工 | 学実験Ⅱ,    | 応用機械設  | 計製図 I , ル | 芯用機械設調  | 計製図Ⅱ, |  |
|               | 応用数学泡                                       | 寅習 A, 応月                                        | 用数学演習  | B,機械工学   | 学インターン | シップ,卒業    | 美研究, 進路 | ・職業と教 |  |
|               | 育, 教育実習事前事後指導, 教育実習及び教職関連科目(授業科目一覧参照), 理工学部 |                                                 |        |          |        |           |         |       |  |
|               | 副専攻プログラム科目(ただし,主専攻の科目として履修する場合は履修登録単位上限の科   |                                                 |        |          |        |           |         |       |  |
|               | 目に含まれ                                       | <b>しる</b> )                                     |        |          |        |           |         |       |  |

#### 注意事項:

- \*1:数値や科目名等は今後カリキュラム変更により変更されることがあり得る。
- \*2:卒業研究を行うのに必要な条件を満たしていない場合は3年次の上限単位数が適用される。
- \*3:全学教育科目の履修登録上限単位数(春学期12単位, 秋学期12単位)の計算には含まれる。

## (4) 成績の扱い

4 年次の研究室配属においては、成績と希望により配属先を決定する。その際、成績の順位を決める指標として用いる評価式は以下の通りである。

$$\frac{GPT}{124} + GPA$$

## (5)早期卒業

2 年次終了時に以下の条件すべてを満たしているものは、3 年次に通常の 3 年次履修科目に加えて卒業研究を履修することができる。これにより、機械工学教育プログラム履修基準における(2)卒業資格の「イ. 本学に 4 年以上在学すること。」を除くすべての要件を満たした場合は、3 年次終了時およびそれ以降に早期卒業できる。

- 2年次終了時において,
- (1) 卒業研究, 3 年次開講の必修科目, 3 年次開講の学部教育科目の選択必修を除いて, 卒業に必要な条件を満たしていること。
- (2) 110 単位以上修得していること。
- (3) GPA が 4.20 以上であること。

これらの条件をすべて満たす見通しがあり、かつ早期卒業を希望する者は、2年次終了時に教務委員に相談すること。

## 履修基準

## (1) 卒業要件

機械工学教育プログラムの卒業要件は、4年以上在学し、全学教育科目28単位以上、学部教育科目から96単位以上、合計124単位以上を修得し、卒業に必要な授業科目のうち履修登録した全科目のGPAが2.0以上であり、かつ卒業審査に合格することである。詳細は、p. A4の「履修基準」を参照のこと。

### (2)卒業資格

- イ. 本学に4年以上在学すること。(但し、早期卒業はこの限りではない。)
- ロ. 全学教育科目の履修単位数・履修科目が卒業に必要な要件(p. A4 の履修基準表)を満足すること。
- ハ. 学部教育科目が卒業に必要な要件(p. A4の履修基準表)を満足すること。
- 二. 卒業研究を終了すること。
- ホ. 卒業に必要な授業科目のうち履修登録した全科目の GPA が 2.0 以上であるもの。

### (3) 卒業研究を行うに必要な要件

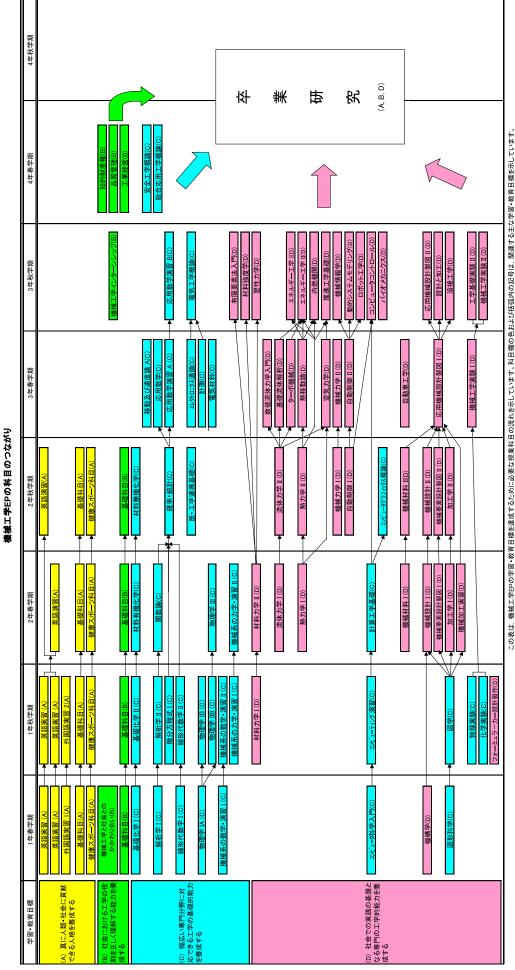
- イ. 全学教育科目の履修単位数・履修科目が卒業研究を行うに必要な要件(p. A4 の履修基準表)を満足すること。
- ロ. 学部教育科目が卒業研究を行うに必要な要件(p. A4の履修基準表)を満足していること。

履修基準は、以下の通りである。学部教育科目については次ページの授業科目一覧に更に細かい基準が決められている。

|                       | 授業科目         | 卒業研究を行うに必要な最低修得単<br>位数 | 卒業に必要な最低修得単位数 |
|-----------------------|--------------|------------------------|---------------|
|                       | 基礎科目         | 人文社会系 2以上              | 人文社会系 4以上     |
|                       | <b>左</b> 旋竹口 | 自然科学系 2以上              | 自然科学系 2以上     |
|                       | 外国語科目        | 英語科目 6以上               | 英語科目 6以上      |
|                       |              | 初修外国語科目 2以上            | 初修外国語科目 2以上   |
| 全学教育科目                |              | 計8以上                   | 計8以上          |
|                       | 健康スポーツ科目     | 選択(0以上2以下)*            | 選択(0以上2以下)    |
|                       | グローバル教育科目    | 選択(0 以上)               | 選択(0以上)       |
|                       | イノベーション教育科目  | 選択(0以上)                | 選択(0 以上)      |
|                       | 全学教育科目小計     | 26 以上                  | 28 以上         |
|                       |              | 情報リテラシー科目 4            |               |
|                       | 基礎演習科目       | 機械系の数学演習Ⅰ,Ⅱ 2          | 8             |
| <b>兴如<u>琳</u>去</b> 到日 |              | 機械系の力学演習 I,II 2        |               |
| 学部教育科目<br>            | 専門基礎科目       | 28 以上                  | 28以上          |
|                       | 機械工学 EP 科目   | 52 以上(卒業研究を除く)         | 60 以上         |
|                       | 学部教育科目小計     | 88以上                   | 96 以上         |
|                       | 合計           | 114 以上**               | 124 以上**      |

<sup>\* 2</sup>単位まで全学教育科目の単位に算入できる。

## 授業科目一覧


| 授業科目一覧               |                 |           | 1  |      |    |                                             |
|----------------------|-----------------|-----------|----|------|----|---------------------------------------------|
|                      |                 |           |    | 単位数  | ζ  |                                             |
| 科目 区分                | 授業科目の名称         | 履修年次      | 必修 | 選択必修 | 選択 | 履修基準                                        |
| 【全学教育科目】             | 1               |           |    |      |    |                                             |
| 自然科学系科               | 図形科学            | 1・2・3・4 春 |    |      | 2  |                                             |
| 目                    | 機械工学と社会とのかかわり合い | 1 春       | 2  |      |    | 必修科目                                        |
| 【学部教育科目】             |                 |           | •  |      |    |                                             |
| 基礎演習科目               | コンピュータ科学入門※     | 1 春       | 2  |      |    |                                             |
| (情報リテラシー科目)          | コンピューティング演習※    | 1 秋       | 2  |      |    |                                             |
|                      | 機械系の数学演習 I ※    | 1 春       | 1  |      |    | N 1641 D                                    |
| #* 7#k /李 33 4 / 1 口 | 機械系の数学演習Ⅱ※      | 1 秋       | 1  |      |    | 必修科目                                        |
| 基礎演習科目               | 機械系の力学演習 I ※    | 1 秋       | 1  |      |    |                                             |
|                      | 機械系の力学演習Ⅱ※      | 2 春       | 1  |      |    |                                             |
|                      | 物理実験            | 1 秋       | 1  |      |    |                                             |
|                      | 化学実験            | 1 秋       | 1  |      |    | 以 <i>收</i> 套 日                              |
| #                    | 機械加工実習          | 2 春       | 1  |      |    | 必修科目                                        |
|                      | 工学基礎実験Ⅱ         | 3 秋       | 1  |      |    |                                             |
| 基礎                   | 解析学 I           | 1 春       |    | 21*) |    |                                             |
| 専門基礎科目               | 解析学Ⅱ            | 1 秋       |    | 21*) |    | 1.05 10 10 10 10 10 10 10 10 10 10 10 10 10 |
|                      | 線形代数学 I         | 1 春       |    | 21*) |    | 1*)は12科目中8科目以                               |
|                      | 線形代数学Ⅱ          | 1 秋       |    | 21*) |    | 上選択必修                                       |
|                      | 微分方程式 I         | 1 秋       |    | 21*) |    |                                             |

<sup>\*\*</sup> 本学他学部科目,横浜市内大学間単位互換科目,放送大学単位互換科目の修得単位は,卒業研究を行うに必要な 単位数および卒業に必要な単位数に算入されない。

|        |                   | 1               |       | - I       | 1 | 1                         |
|--------|-------------------|-----------------|-------|-----------|---|---------------------------|
|        |                   | 関数論             | 2 春   | 21*)      |   |                           |
|        |                   | 確率•統計           | 2 秋   | 21*)      |   |                           |
|        |                   | 応用数学            | 3 春   | 21*)      |   | <br>  1*)は 12 科目中 8 科目以   |
|        |                   | 物理学IA           | 1 春   | 21*)      |   | 上選択必修                     |
|        |                   | 物理学IB           | 1 秋   | 21*)      |   |                           |
|        |                   | 物理学ⅡB           | 1 秋   | 21*)      |   |                           |
|        |                   | 物理学Ⅲ            | 2 春   | 21*)      |   |                           |
|        |                   | 基礎化学 I          | 1 春   | 22*)      |   |                           |
|        |                   | 基礎化学Ⅱ           | 1 秋   | $2^{2*)}$ |   | <br>  2*)は5科目中3科目以上       |
|        |                   | 計測              | 3 春   | $2^{2*)}$ |   | 選択必修                      |
|        |                   | エレクトロニクス通論      | 3 春   | 22*)      |   | 医1八化形                     |
|        |                   | 電気工学概論          | 3 秋   | 22*)      |   |                           |
| -      | <b>≠</b>          | 図学              | 1 秋   |           | 2 |                           |
|        | <del>寻</del><br>明 | フォーミュラーカー設計製作   | 1 秋   |           | 2 |                           |
| 1 2    | 基<br>滋            | 材料有機化学          | 2 春   |           | 2 |                           |
| 1      | 専門基礎科目            | 材料無機化学          | 2 秋   |           | 2 |                           |
|        |                   | コンピュータグラフィックス概論 | 2 秋   |           | 2 |                           |
|        |                   | 医•工学連携基礎        | 2 秋   |           | 2 |                           |
|        |                   | 応用数学演習A         | 3 春   |           | 2 |                           |
|        |                   | 応用数学演習B         | 3 秋   |           | 2 |                           |
|        |                   | 移動および速度論A       | 3 春   |           | 2 |                           |
|        |                   | 電気材料            | 3 春   |           | 2 |                           |
|        |                   | 自動車工学           | 3•4 春 |           | 2 |                           |
|        |                   | 溶接工学            | 3 秋   |           | 2 |                           |
|        |                   | 知的財産権           | 4 春   |           | 2 |                           |
|        |                   | 品質管理            | 4 春   |           | 2 |                           |
|        |                   | 工業経営            | 4 春   |           | 2 |                           |
|        |                   | 安全工学概論          | 4 春   |           | 2 |                           |
|        |                   | 総合応用工学概論        | 4 春   |           | 2 |                           |
|        |                   | 自然環境リスク共生概論 B   | 14    |           | 1 |                           |
|        |                   | 生物科学 I          | 1 春   |           | 2 |                           |
|        |                   | 生物科学Ⅱ           | 1 秋   |           | 2 |                           |
|        |                   | 生態学遠隔地          | 0.00  |           |   |                           |
|        |                   | フィールドワーク        | 23    |           | 2 | 大光に立西な光片に答え               |
| 専      | 教                 | 海洋学フィールドワーク     | 2③    |           | 2 | 卒業に必要な単位に算入               |
| 専門基礎科目 | 教職関連科目            | 生態学実習 I         | 3①    |           | 1 | しない。<br>履修上限から除外する。       |
| 礎科     | 連<br>科            | 生態学実習Ⅱ          | 32    |           | 1 | 履修工限がら床外りる。<br>GPAに算入しない。 |
|        |                   | 地球科学            | 1 春   |           | 2 | ・丸数字はタームを表す。              |
|        |                   | 地球システム論 I       | 24    |           | 1 | 1000 1 100 MC 1X yo       |
|        |                   | 地球システム論Ⅱ        | 25    |           | 1 |                           |
|        |                   | 地球科学実験          | 1 春   |           | 2 |                           |
|        |                   | 地質学遠隔地          | 3 春   |           | 2 |                           |
|        |                   | フィールドワーク        | 0 甘   |           |   |                           |

|         | 機械要素設計製図I                      | 2 春 | 2 |           |         |                           |
|---------|--------------------------------|-----|---|-----------|---------|---------------------------|
|         | 機械要素設計製図Ⅱ                      | 2 秋 | 2 |           |         | -                         |
|         | 機械工学実験Ⅰ                        | 3 春 | 1 |           |         | -                         |
|         | 機械工学実験Ⅱ                        | 3 秋 | 1 |           |         | - 必修科目                    |
|         | 応用機械設計製図I                      | 3 春 | 2 |           |         | -                         |
|         | 応用機械設計製図Ⅱ                      | 3 秋 | 2 |           |         | 1                         |
|         | 材料力学I                          | 1 秋 |   | 2*)       |         |                           |
|         | 材料力学Ⅱ                          | 2 春 |   | 2*)       |         | -                         |
|         | 熱力学Ⅰ                           | 2 春 |   | 2*)       |         | -                         |
|         | 熱力学Ⅱ                           | 2 秋 |   | 2*)       |         | -                         |
|         | 流体力学Ⅰ                          | 2 春 |   | 2*)       |         | -<br>  *)は10科目中8科目以上      |
|         | 流体力学Ⅱ                          | 2 秋 |   | 2*)       |         | 選択必修                      |
|         | 機械力学Ⅰ                          | 2 秋 |   | 2*)       |         |                           |
|         | 機械力学Ⅱ                          | 3 春 |   | 2*)       |         | -                         |
|         | 自動制御 I                         | 2 秋 |   | 2*)       |         | -                         |
|         | 自動制御Ⅱ                          | 3 春 |   | 2*)       |         | -                         |
|         | 機構学                            | 1 春 |   | 2**)      |         |                           |
|         | 機械設計Ⅰ                          | 2 春 |   | 2**)      |         | _                         |
|         | 機械設計Ⅱ                          | 2 秋 |   | 2**)      |         | -                         |
|         | 加工学Ⅰ                           | 2 春 |   | 2**)      |         | -<br> <br>  **)は8科目中4科目以上 |
| 械       | 加工学Ⅱ                           | 2 秋 |   | 2**)      |         | 選択必修                      |
| 工<br>学  | 機械材料Ⅰ                          | 2 春 |   | 2**)      |         | - 医状见疹<br>-               |
| 械工学EP科目 | 機械材料Ⅱ                          | 2 秋 |   | 2**)      |         | -                         |
| 科目      | 計算工学基礎                         | 2 春 |   | 2**)      |         | -                         |
| Ħ       | 材料強度学                          | 3 秋 |   | 2***)     |         |                           |
|         | 熱移動論                           | 3 春 |   | 2***)     |         | <u> </u>                  |
|         | 基礎流体解析                         | 3 春 |   | 2***)     |         | -                         |
|         | 空気力学                           | 3春  |   | 2***)     |         | -                         |
|         | 会                              | 3 秋 |   | 2***)     |         | _                         |
|         | 有限要素法入門                        | 3 秋 |   | 2***)     |         | ***)は11科目中7科目以            |
|         | 内燃機関                           | 3 秋 |   | 2***)     |         | 上選択必修                     |
|         | 推進工学基礎                         | 3 秋 |   | 2***)     |         | <u> </u>                  |
|         | 動的システムモデリング                    | 3 秋 |   | 2***)     |         | -                         |
|         | 到的シスノムモノリンクコンピュータコントロール        | 3 秋 |   | 2***)     |         | -                         |
|         | ロボット工学                         | 3 秋 |   | 2***)     |         | -                         |
|         | 塑性力学                           | 3 春 |   | Δ .       | 2       |                           |
|         | ターボ機械                          | 3 春 |   |           | 2       | -                         |
|         | 数值流体力学入門                       | 3 春 |   |           | 2       | -                         |
|         | 機械工学インターンシップ                   | 3 秋 |   |           | 2       | -                         |
|         | 機械情報学                          | 3 秋 |   |           | 2       | _                         |
|         | バイオメカニクス                       | 3 秋 |   |           | 2       | -                         |
|         | エネルギー工学Ⅰ                       | 3 秋 |   |           | 2       | -                         |
|         | エネルギー工学Ⅱ                       | 3 秋 |   |           | 2       | -                         |
|         | 卒業研究                           | 4 通 | 8 |           |         | <b>必修科</b> 目              |
| .07     | □   千木明九<br>郊数春科日のうち ※印を付した科日け |     | _ | )/(T) = 3 | 06.41.5 |                           |

学部教育科目のうち、※印を付した科目は、自学科開設科目であり、他学科の学生は履修できない。



A 7

## 材料工学教育プログラム

## (1) 学習·教育目標

### 育成人材像

社会に関する広い教養と高い倫理観を持ち、工学全般の基礎的知識と材料に関わる専門知識とを備え、工学の他分野の研究と技術を積極的に取り入れて独創的な技術開発と科学を開拓する高度専門技術者、研究者として将来活躍できる人材の育成を目的とする。特に、材料が社会を支える基盤技術であることを認識し、金属、セラミックス、半導体、その周辺材料の開発ならびに特性評価に関する基礎的知識を修得することを目指している。

### <マクロ材料学とプロセス設計>

- ■材料の組成,組織,構造の不均一な分布を制御する加工技術と力学特性を学ぶ。
- ■連続体力学にもとづくマクロな固体材料の強度と変形理論を理解し,加工技術開発の基本を学ぶ。
- ■材料組織とそれを支配する基本的な法則,材料の強さを生む基本的な仕組みを理解し,材料の開発ならびに適切な 材料選択の基本を学ぶ。

#### <ナノ材料学>

- ■材料の原子・ナノスケールでの構造と物性を支配する基本的な法則を理解し、ミクロな組織不均一性とヘテロ構造制御について学ぶ。
- ■原子・分子レベルの観察や制御方法により、材料のナノ構造と機能をマクロな特性と結びつけて理解することを学ぶ。
- ■材料内部での電子の働きとそれが生み出す物理特性の基本的な仕組み,材料の量子力学的効果について学ぶ。 <サステイナビリティ材料学>
- ■材料の熱力学や物理的および化学的反応に基づくプロセスの基本的な法則,材料の状態および反応とそれらを評価・解析する基本的な仕組みについて学ぶ。
- ■材料およびプロセスに環境性能を付与する考えや技術、ライフサイクルや信頼性・安全性・経済性などの社会環境との 整合について学ぶ。

## 学習・教育(到達)目標

- (A) 真に人類・社会に貢献できる人格を養成する。
  - ■広い学問領域に触れることによって、人類の幸福・福祉に貢献できる能力
  - ■外国語や教養科目の履修を通じて異なる文化を理解し、多面的に物事を考える能力
- (B) 社会における工学の役割を正しく理解する能力を養成する。
  - ■科学技術が自然現象や人間社会とどのように関わっているかを理解できる能力
  - ■自立した技術者として責任をもって行動できる能力数学や物理学などの自然科学と情報技術,工学の基礎知識を修得し, これらを応用できる能力
- (C) 幅広い専門分野に対応できる工学の基礎的能力を養成する。
  - ■数学や物理学などの自然科学と情報技術の知識を修得し、これらを応用できる能力
  - ■物理および化学の基礎に立脚して、様々な材料の構造・組織や機能・特性をナノメートルからミリメートルスケールで連続的に捉えて現象を理解する能力
  - ■機械構造物や電子情報機器などにおける各種機能を担う、機能・構造材料の内部構造や表面および界面の特性、それらの評価・解析技術に関わる専門能力
- (D) 社会での実践を志向して専門の工学的能力を養成する。
  - ■材料工学の基盤となる専門知識を修得し、これらを応用・展開する能力と、将来自主的かつ継続的に学習できる能力
  - ■工学的考え方を利用して問題解決に応用できる解析・設計・コミュニケーションの能力
  - ■いかなる環境の下でも周到な計画に基づいて問題解決に取り組み, まとめる能力

## (2)教育の流れ

材料工学分野は、"Interdisciplinary field applying the properties of matter to various areas of science and engineering" と定義され、原子・分子レベルの物質の構造とマクロ的な材料特性との関係を理解して工学に適用する分野である。そのため、①マクロ材料学とプロセス設計、②ナノ材料学、③サステイナビリティ材料学の3点により教育体系を構築している。

1年次には、「基礎科目」と「外国語科目」に加え、主に導入的役割を担う「基礎演習科目」、理工学の基礎を学ぶ「理工学部基

盤科目」について履修する。

2~3年次には、材料組織学、材料学、力学設計、材料物理学に関する「理工学部基盤科目」と「専門科目」を系統的に学修し、基礎科学や工学基礎科目の学修と合わせて、材料工学の基礎を修得する。また、工学基礎実験、材料工学実験、機械要素設計製図、機械加工実習などの実験・演習科目を履修し、材料工学への理解を発展深化させる。さらには、ライフサイクル、資源、製品機能の信頼性確保が重視される時代に向けて材料科学を括り直し、社会の課題解決・価値づくりに充てる企画力・デザイン力を修得する。「グローバル教育科目」および「イノベーション教育科目」を履修し、高度の教養力を身につける。

4年次での卒業研究では、最先端の研究課題に取り組むことにより、これまでに学修した内容を集大成し、主体的に活躍できる能力を培う。また、卒業研究に加え、課題解決型学習 (Project-based Learning) 科目を導入し、学修を実践へと応用する力を修得する。

機械・材料・海洋系学科が提供する航空宇宙工学分野の体系的な専門教育を履修することが可能である。教員免許資格は、中学校1種(数学・理科)および高等学校1種(理科・数学)免許状の取得が可能である。

## (3) 履修登録単位数の上限

材料工学教育プログラムでは下表に示すように、一学期に履修登録できる単位数に上限が設定されている。その上限単位数を超えて履修登録することはできないので注意すること。ただし、表に示された科目は上限単位数の計算に含まれない。また1年次秋学期からは、履修登録する直前一学期の成績の GPA が 2.5 以上の学生は、上限単位数の設定が 26 単位に緩和される。なお、全学教育科目の履修登録上限単位数は各学期で12単位である。

|               | 復修 全                                              |                                           |        |          |        |          |                 |               |  |  |  |
|---------------|---------------------------------------------------|-------------------------------------------|--------|----------|--------|----------|-----------------|---------------|--|--|--|
| 年次            | 1 年次                                              |                                           | 2 年    | 三次       | 3 年    | 三次       | 4年              | 次*2           |  |  |  |
| 学期            | 春学期                                               | 秋学期                                       | 春学期    | 秋学期      | 春学期    | 秋学期      | 春学期             | 秋学期           |  |  |  |
| 上限単位数         | 24                                                | 24                                        | 22     | 22       | 20     | 20       | 14              | 14            |  |  |  |
| 上限が緩和された場合    | _                                                 |                                           |        |          | 26     |          |                 |               |  |  |  |
| 単位上限の計算に含まれない | 健康スポーツ演習 B*3, コンピューティング, 数学演習, 物理学演習, 物理実験, 化学実験, |                                           |        |          |        |          |                 |               |  |  |  |
| 科目名           | 機械要素詞                                             | 设計製図 A,                                   | 機械要素設  | 計製図 B,   | 機械加工実  | 習,工学基础   | <b>港実験Ι</b> , ホ | 材料工学実         |  |  |  |
|               | 験 I , 材料                                          | 】工学実験 Ⅱ                                   | [,金属組織 | 学•演習 I , | 金属組織学  | 左•演習Ⅱ, 帰 | 5月数学演習          | 图 A, 応用       |  |  |  |
|               | 数学演習                                              | B, 材料設計                                   | 汁ゼミナール | ,材料工学    | インターンシ | ⁄ップ,卒業は  | 研究,教育職          | 競員免許に         |  |  |  |
|               | 関係する科                                             | 関係する科目及びその他教職関連科目(授業科目一覧参照),他学科・他学部開講科目,理 |        |          |        |          |                 |               |  |  |  |
|               | 工学部副耳                                             | 専攻プログラ                                    | ム科目(たた | ごし, 主専攻  | の科目として | て履修する場   | 計合は履修翌          | <b>於</b> 録単位上 |  |  |  |
|               | 限の科目は                                             | つ 含まれる)                                   |        |          |        |          |                 |               |  |  |  |

層修為器用位 F 個\*1

注意事項:

- \*1:数値や科目名等は今後カリキュラム変更により変更されることがあり得る。
- \*2:卒業研究を行うのに必要な条件を満たしていない場合は3年次の上限単位数が適用される。
- \*3:全学教育科目の履修登録上限単位数(春学期12単位, 秋学期12単位)の計算には含まれる。

### (4) 成績の扱い

4年次の研究室配属においては、成績と希望により配属先を決定する。その際、成績の順位を決める指標として用いる評価式は以下の通りである。

$$\frac{GPT}{124} + GPA$$

## (5)早期卒業

2年次終了時に以下の条件を全て満たしている学生は、3年次に通常の3年次履修科目に加えて卒業研究を履修することができる。これにより卒業資格を満たした場合は、3年次終了時およびそれ以降に早期卒業できる。 (条件)

2年次終了時において、

- ① 卒業研究,3年次開講の必修科目を除いて,必修科目を修得していること。
- ② 卒業研究8単位、3年次開講の必修科目9単位を除いて、卒業資格を満たしていること。
- ③ 卒業に必要な授業科目のうち履修登録した全科目の GPA が 4.20 以上であること。

これら①、②、③の条件を全て満たす見通しがあり、かつ早期卒業を希望する者は、2年次終了時に教務委員に相談すること。

## 履修基準

履修基準は,以下の通りである。全学教育科目については全学教育科目履修基準表,学部教育科目については材料工学教育プログラム学部教育科目表に更に細かい基準が決められているので参照すること。ただし,本学他学部開講科目,横浜市内大学間単位互換科目,放送大学単位互換科目の修得単位は卒業に必要な単位数に算入されない。

| 授業科目   |                            |            | 全学教育科目    | 学部教育科目    |             |        |        |              |  |  |  |  |
|--------|----------------------------|------------|-----------|-----------|-------------|--------|--------|--------------|--|--|--|--|
| 1文未行日  | 基礎科目                       | 外国語科目      | 健康・スポーツ科目 | グローバル教育科目 | イノベーション教育科目 | 基礎演習科目 | 専門基礎科目 | 材料工学 EP 専門科目 |  |  |  |  |
|        | 人文社会系4以上 英語科目6以上 選択* 選択 選択 |            | 6         | 30 以上     | co PL I     |        |        |              |  |  |  |  |
| 卒業に必要な | 自然科学系4以上                   | 初修外国語科目2以上 | 沙型        | 地位        | 迭代          | O      | 30 以上  | 62 以上        |  |  |  |  |
| 修得単位数  |                            |            | 計 26 以上   | 計 98 以上   |             |        |        |              |  |  |  |  |
|        |                            | 計 124 以上   |           |           |             |        |        |              |  |  |  |  |

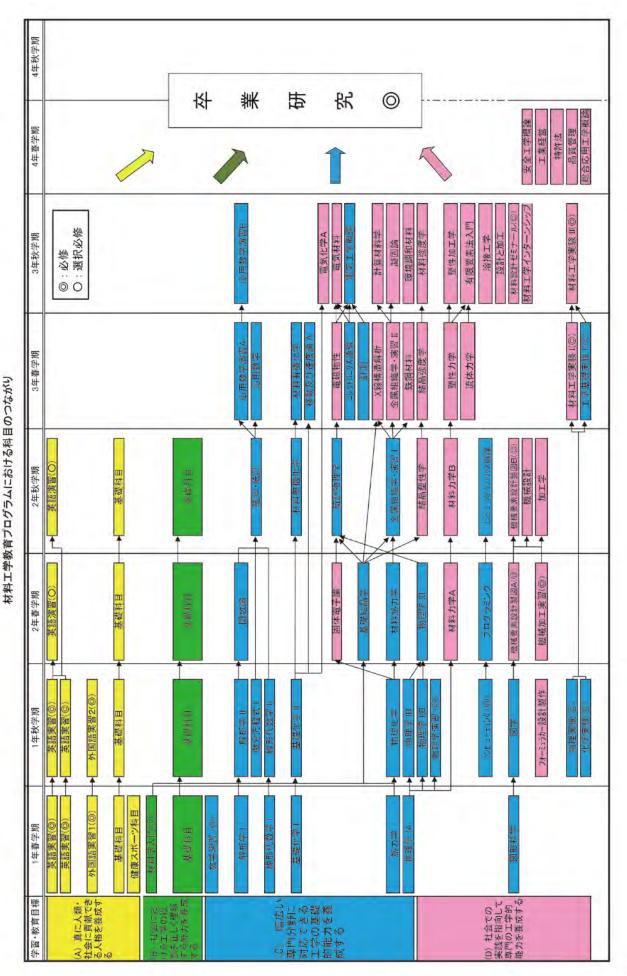
<sup>\*2</sup>単位までを全学教育科目の単位に算入できる。

## (1) 卒業資格

- イ. 本学に4年以上在学すること。(但し,早期卒業はこの限りではない。)
- ロ. 全学教育科目の履修単位数・履修科目が卒業に必要な要件(上表)を満足すること。
- ハ. 学部教育科目が卒業に必要な要件(上表)を満足すること。
- ニ. 卒業研究を終了すること。
- ホ. 卒業に必要な授業科目のうち履修登録した全科目の GPA が 2.0 以上であること。

## (2) 卒業研究を行うに必要な要件

卒業研究を除くすべての必修科目を修得し,全学教育科目 22 単位以上(基礎科目 8 単位以上,外国語科目 8 単位以上),及び,学部教育科目 90 単位以上(基礎演習科目 6 単位,専門基礎科目 30 単位以上,材料工学EP専門科目 54 単位以上)のすべての条件を満たしていること。


## 授業科目一覧

|          |       |                         |                |    | 単位数  |    |                      |  |
|----------|-------|-------------------------|----------------|----|------|----|----------------------|--|
| 科目<br>区分 |       | 授業科目の名称                 | 配当年次           | 必修 | 選択必修 | 選択 | 備考                   |  |
| 【全学教育    | 育科目   | 1                       |                |    |      |    |                      |  |
| 全学数      |       | 材料学入門                   | 1 春            | 2  |      |    |                      |  |
| 全学教育科目   |       | 機械工学と社会とのかかわり合い<br>図形科学 | 1~4 春<br>1~4 春 |    |      |    | 自学科開講クラス             |  |
| 【学部教育    | 育科目   | 1                       |                |    |      |    |                      |  |
|          |       | コンピューティング               | 1 秋            | 2  |      |    |                      |  |
| 基礎演      |       | 数学演習※                   | 1 春            | 2  |      |    | 自学科開講科目,<br>他学科は履修不可 |  |
| 基礎演習科目   |       | 物理学演習※                  | 1 秋            | 2  |      |    | 自学科開講科目,<br>他学科は履修不可 |  |
|          |       | 小計(3 科目)                | _              | 6  |      |    |                      |  |
| 専        | 数     | 解析学 I                   | 1 春            |    |      | 2  |                      |  |
| 専門基礎科目   | 数学関係科 | 解析学Ⅱ                    | 1 秋            |    |      | 2  |                      |  |
| 礎科       | 係科    | 線形代数学 I                 | 1 春            |    |      | 2  |                      |  |
| 目        | 目     | 線形代数学Ⅱ                  | 1 秋            |    |      | 2  |                      |  |

|                   | 微分方程式 I            | 1 秋   |   | 2  |                    |
|-------------------|--------------------|-------|---|----|--------------------|
|                   | 関数論                | 2 春   |   | 2  |                    |
|                   | 確率•統計              | 2 秋   |   | 2  |                    |
|                   | 物理学IA              | 1 春   |   | 2  |                    |
| 物                 | 物理学 I B            | 1 秋   |   | 2  |                    |
| 理                 | 物理学ⅡB              | 1 秋   |   | 2  |                    |
| 図                 | 物理学Ⅲ               | 2 春   |   | 2  |                    |
| 学型                | 物理実験               | 1 秋   | 1 | _  |                    |
| 理·図学関係科           | 図学                 | 1 秋   |   | 2  |                    |
| 村                 |                    | 3 春   |   | 2  |                    |
|                   | コープログラス・エレクトロニクス通論 | 3 春   |   | 2  |                    |
| 化                 | 基礎化学 I             | 1 春   |   | 2  | -                  |
| 化学関連基礎科           |                    | 1 秋   |   | 2  |                    |
| 関                 | 基礎化学Ⅱ              | •     |   |    |                    |
| 基本                | 材料有機化学             | 2 春   |   | 2  |                    |
| 樅                 | 材料無機化学             | 2 秋   |   | 2  |                    |
| Ħ                 | 化学実験               | 1 秋   | 1 |    |                    |
|                   | 機械加工実習             | 2 春   | 1 |    |                    |
|                   | 電気材料               | 3 春   |   | 2  |                    |
|                   | 応用数学               | 3 春   |   | 2  |                    |
|                   | 応用数学演習A            | 3 春   |   | 2  |                    |
|                   | 応用数学演習B            | 3 秋   |   | 2  |                    |
|                   | 流体力学               | 3•4 秋 |   | 2  |                    |
|                   | 溶接工学               | 4 秋   |   | 2  |                    |
| T.                | コンピュータグラフィックス概論    | 2 秋   |   | 2  |                    |
| 工学基礎科             | 電気工学概論             | 3 秋   |   | 2  |                    |
| 一一一一一一一一一一一一一一一一一 | 移動および速度論A          | 3 春   |   | 2  |                    |
| 科目                | 工学基礎実験I            | 3 春   | 1 |    |                    |
|                   | 知的財産権              | 4 春   |   | 2  |                    |
|                   | 品質管理               | 4 春   |   | 2  |                    |
|                   | 工業経営               | 4 春   |   | 2  |                    |
|                   | 安全工学概論             | 4 春   |   | 2  |                    |
|                   | 総合応用工学概論           | 4 春   |   | 2  |                    |
|                   | 自動車工学              | 4 春   |   | 2  |                    |
|                   | 医•工学連携基礎           | 4 秋   |   | 2  |                    |
|                   | フォーミュラーカー設計製作      | 1 秋   |   | 2  |                    |
|                   | 自然環境リスク共生概論 B      | 14    |   | 1  |                    |
|                   | 生物科学I              | 1 春   |   | 2  |                    |
|                   | 生物科学Ⅱ              | 1 秋   |   | 2  | 卒業に必要な単位           |
|                   | 生態学遠隔地フィールドワーク     | 2③    |   | 2  | に算入しない。            |
| 教                 | 海洋学フィールドワーク        | 23    |   | 2  | で好八しょ v 。          |
| 職関                | 生態学実習I             | 3①    |   | 1  | する。                |
| 教職関連科             | 生態学実習Ⅱ             | 3②    |   | 1  | 」,る。<br>GPA に算入しない |
| 目                 | 地球科学               | 1 春   |   | 2  | ・<br>丸数字はタームを      |
|                   | 地球システム論 I          | 24    |   | 1  | えが、表す。             |
|                   | 地球システム論Ⅱ           | 25    |   | 1  | 1490               |
|                   | 地球科学実験             | 1 春   |   | 2  |                    |
|                   | 地質学遠隔地フィールドワーク     | 3 春   |   | 2  |                    |
| 小計                | (51 科目)            | _     | 4 | 89 |                    |

|            | 熱力学          | 1 春 |    | 2  |                |
|------------|--------------|-----|----|----|----------------|
|            | 物理化学         | 1 秋 |    | 2  |                |
|            | プログラミング      | 2 春 |    | 2  |                |
|            | 基礎結晶学        | 2 春 |    | 2  |                |
|            | 材料熱力学        | 2 春 |    | 2  |                |
|            | 加工学          | 2 秋 |    | 2  |                |
|            | 材料力学A        | 2 春 |    | 2  |                |
|            | 材料力学B        |     |    |    |                |
|            |              | 2 秋 |    | 2  |                |
|            | 金属組織学•演習 I   | 2 秋 |    | 3  |                |
|            | 金属組織学・演習Ⅱ    | 3 春 |    | 3  |                |
|            | 結晶塑性学        | 2 秋 |    | 2  |                |
|            | 固体電子論        | 2 春 |    | 2  |                |
|            | 機械設計         | 2 秋 |    | 2  |                |
|            | 機械要素設計製図A    | 2 春 | 2  |    |                |
| **         | 機械要素設計製図B    | 2 秋 | 2  |    |                |
| 材料工学EP専門科目 | 材料工学実験I      | 3 春 | 3  |    |                |
| 工学         | 材料工学実験Ⅱ      | 3 秋 | 3  |    |                |
| Ė          | 結晶強度学        | 3 春 |    | 2  |                |
| 専          | 材料強度学        | 3 秋 |    | 2  |                |
| Pi         | X線結晶構造解析     | 3 春 |    | 2  |                |
| 目          | 鉄鋼材料         | 3 春 |    | 2  |                |
|            | 統計物理学        | 2 秋 |    | 2  |                |
|            | 電磁物性         | 3 春 |    | 2  |                |
|            | 塑性力学         | 3 春 |    | 2  |                |
|            | 塑性加工学        | 3 秋 |    | 2  |                |
|            | 凝固論          | 3 秋 |    | 2  |                |
|            | 計算材料学        | 3 秋 |    | 2  |                |
|            | 環境調和材料       | 3 秋 |    | 2  |                |
|            | 材料設計ゼミナール    | 3 秋 | 2  |    |                |
|            | 材料工学インターンシップ | 3 秋 |    | 2  |                |
|            | 電気化学A        | 3 秋 |    | 2  | 化学応用EP開講<br>科目 |
|            | 有限要素法入門      | 3 秋 |    | 2  |                |
|            | 設計と加工        | 3 秋 |    | 2  |                |
|            | 卒業研究         | 4 通 | 8  |    |                |
|            | 小計(34 科目)    | _   | 20 | 58 |                |

学部教育科目のうち、※印を付した科目は、自学科開設科目であり、他学科の学生は履修できない。



A 13

# 海洋空間のシステムデザイン教育プログラム

## (1) 学修·教育目標

全世界的な人・物・情報の高速移動が人類の活動範囲の拡大をもたらしている。その活動範囲は陸上に留まらず、洋上、深海、大気圏、さらには宇宙にまで広がっている。その様な人間活動に相まって、自然環境への影響や資源・エネルギー問題が顕在化している。この問題の解決が、将来にわたり健全で持続的な人間活動を支える基盤となる。

本教育プログラムの教育研究対象となる空間は、地球表面の 70%を占める海面を挟んで上下に位置する海洋および大気圏・宇宙である。「海洋空間」とは、洋上、深海、大気圏、宇宙を包括的に意味する。本 EP で意味する「システム」とは、広大な空間で活躍する船舶・海洋構造物・航空機・人工衛星等の機器および、こうした機器の周囲の空間、さらに機器と空間との相互作用も含む概念である。そのようなシステムを計画・設計できるようになることが本 EP における教育の主要な目標である。

本教育プログラム所属の学生は、このような内容を専門的に扱う学術分野である船舶海洋工学と航空宇宙工学の両方の学修し、上記の問題を解決する人材となることを目指す。船舶・海洋構造物・航空機・人工衛星等は、これらの問題解決を実現するための要となる技術であり、こうした技術に関する基礎的知識や、それらの設計能力を身につける。また、これらの技術を構成する要素技術を単独に知るだけでなく、複数の要素技術を有機的に統合し、ひとつのシステムとして創り上げる能力を獲得する。この能力を活用して、上述した自然環境への影響や資源・エネルギー問題を解決する。また、国と国との境を越えて利用される船舶や航空機等に関する多様な内容が織り交ぜられたカリキュラムに沿って学修することを通じて、今般の社会で最も重要な能力とされる国際性および幅広い視野を涵養する。

以上の目標を達成するために、以下に示す policy のもと、本教育プログラムのカリキュラムが組まれている。

#### Policy1 [学位授与]

船舶海洋工学と航空宇宙工学に関連する幅広い基礎知識と,個々の技術を有機的に統合する能力とを身に付けた学生に対して,客観的な評価に基づき学位を授与する。最終学年の卒業研究では,自発的に研究に取り組むことを学生に求め,卒業論文の執筆を課し,問題解決能力と,システム的な視点の獲得の度合いとを評価する。

#### Policy2 [教育課程の編成と実施]

演習・実験という自分の頭と手足とをふんだんに用いる科目の修得を課す。それにより、創造力および、問題解決に向けて実践的に行動する能力を高める。入学当初は、一般教養に関する科目、数学や物理に関する基礎的な科目の履修によって土台を固め、徐々に専門的な内容の科目を履修する。最終学年(4年次)では学生は各研究室に配属され、最先端の研究に参加する。

#### Policv3 「育成目標」

本教育プログラムでは、船舶海洋工学と航空宇宙工学両方の知識を有する人物、その知識を用いて当該技術が広い空間内で機能する様、システム的思考を駆使できる人物を育成する。

## Policy4 [教育の質の持続的向上]

本教育プログラムを担当する教員は、産業界動向、大学入学者の動向、学術界の動向などに目を配り、それに応じて随時、カリキュラムや授業内容を改良している。学生への授業アンケートや、学生との個別面談により、学生の満足度を高め、健全な学生生活の継続に配慮する。

### (2)教育の流れ

1年次で大学生としての教養および理工学部生としての基礎科学を学ぶことと並行して、専門分野の歴史や社会での位置付けを学ぶ。2年次以降は専門分野の知識を高め、3年次では設計に至るまでの応用力をつける。学んだ理論を実践することに重きを置くため、演習や実験を重視し、技術要素を統合する設計を行うことで幅広い視野を養成する。4年次での卒業研究において、少人数輪講と併せることで、論理的な思考力や説明能力、国際的コミュニケーション能力も養成する。

## (3) 履修単位登録数の上限

- 1) 各学期の履修登録単位数の上限は、1年次は24単位、2年次以上は20単位である。ただし、履修登録を行う学期のひとつ前の学期におけるGPAが3.0以上の者については上限を26単位とすることができる。
- 2) 次の①から④に挙がっている科目については、履修登録単位数の計算から除外できる。
  - ①数学・力学演習 I, II, 数値情報処理 I, II, 物理実験, 化学実験, 応用数学演習 A, B, 流体力学演習, 応用流体力学実験, 応用流体力学演習, 応用流体力学輪講, 操船論・演習, 浮体運動学実験, 浮体運動学演習, 材料力学・演習 I, 材料力学演習 II, 材料・構造実験, 構造力学輪講, 設計製図・演習 I, II, 海洋設計工学輪講, 海洋システムデザイン輪講, 海洋資源エネルギー工学輪講, 航空宇宙システム輪講, 卒業研究
  - ②中学校・高等学校教諭一種(数学)免許状を取得するための教科科目のうち, 幾何学 I, Ⅱ, Ⅲ③教職科目(職業指導など)④他 EP 提供の学科共通科目
- 3) 全学教育科目には、各学期12単位を上限とする履修登録制限がある。

## (4) 早期卒業

後述の卒業資格の全ての要件を満たした場合は、3年次終了時およびそれ以降に早期卒業ができる。そのためには、2年次終了時に早期卒業希望者の卒業研究着手条件を満たし、3年次通年で実施される卒業研究を履修しなければならない。

## (5) 成績の扱い

卒業研究における研究室の配属には成績が重要な基準となる。その際に使用する GPT の算出には、教職に関する科目などの他学部開講科目は評価の対象とせず、成績表に記載されている「通算 GPT」を用いる。 GPA および GPT には他 EP 提供の学科共通科目は含まれる。

## (6) 大学院への飛び入学

本教育プログラムでは、大学卒業を必要としない大学院進学を認める制度を設けていない。

## 履修基準

## (1) 卒業資格

卒業に必要な単位数の内訳は以下の通りである。3,4年以上在学し、全学教育科目と学部教育科目を合わせて124単位以上を修得し、GPAは2.0以上でなければならない。ただし、下記の各注意事項を参照のこと。

|             | 全 :    | 学 教育    | 7 科 目 | 1       | 学    | 部教育科    | 目      |  |
|-------------|--------|---------|-------|---------|------|---------|--------|--|
| 甘林刊口        | 外国語    | 健康スポーツ  | グローバル | イノベーション | 基礎演習 | 専門基礎    | 専門科目   |  |
| 基礎科目        | 科目     | 科目      | 教育科目  | 教育科目    | 科目   | 科目      | 等门科日   |  |
| 人文社会系       | 英語科目   |         |       |         |      |         |        |  |
| 4以上         | 6以上    | 選択(4単位ま |       |         |      |         |        |  |
|             | 初修外国   | でを全学教育  | 選択    | 選択      | 6 以上 | 22 以上   | 64 以上  |  |
| 自然科学系       | 語科目    | 科目の単位に  | (0以上) | (0以上)   | 0 以上 | 22 5/1. | 04 2/1 |  |
| 4以上         | 2以上    | 算入できる)  |       |         |      |         |        |  |
|             | - 0.11 |         |       |         |      |         |        |  |
| 30 以上 94 以上 |        |         |       |         |      |         |        |  |
|             |        |         |       | 124 以上  |      |         |        |  |

## 全学教育科目に関する注意

- 1) 必修4単位(海洋工学と社会,海事技術史)を修得しなければならない。
- 2) 選択必修の6単位(応用気象学, 統計学 I-C, 統計学 I-C)中,4単位以上を修得しなければならない。
- 3) 基礎科目は、人文社会系4単位以上、自然科学系4単位以上を修得しなければならない。
- 4) 外国語科目は、英語科目必修 6 単位以上、初修外国語科目 2 単位以上を修得し、外国語科目全体で 8 単位以上修得しなければならない。グローバル教育科目の中の国際交流科目を英語科目の単位として上限 4 単位まで読み替えられる。
- 5) 健康スポーツ科目は、4単位までを全学教育科目の単位に算入できる。
- 6) 放送大学科目は,全学教育科目の合計,基礎科目,初修外国語科目(4 単位まで)の区分に,卒業に必要な単位として 算入できる。

### 学部教育科目に関する注意

- 1) 専門基礎科目は, 選択必修17単位(カテゴリ1から6単位以上, カテゴリ2から5単位以上, カテゴリ3から6単位以上) を含む22単位以上修得しなければならない。
- 2) 専門科目については、必修26単位を修得しなければならない。
- 3) 基礎演習科目については、必修6単位を修得しなければならない。

#### 履修に関するその他の注意

- 1) 横浜市立大学, 横浜市内大学, 他学部開講科目を履修することができる。ただし, 修得単位は履修基準に示す卒業に必要な単位数に算入することはできない。
- 2) 在学中は学生教育研究災害傷害保険に加入しなければならない。加入していない場合には、実験科目等の一部の科目について履修できないことがある。
- 3) 2 学期間(1 年間)を通じて GPA が 2.0 未満の者については退学勧告を含む進学指導を行うことがある。
- 4) 副専攻(機械・材料・海洋系学科)の履修に必要な単位は、卒業に必要な単位数を超えて取得する必要がある。例えば、他 EP 提供の学科共通科目から2単位を卒業に必要な単位に含めた場合は、この2単位とは別に、副専攻の修得に必要な単位を履修しなければならない。副専攻(機械・材料・海洋系学科)の履修を希望するものは、定められた期間に申請しなければならない。

## (2) 卒業研究を行うために必要な要件

各年度の終了時に以下の条件を満たした場合,次年度の卒業研究を履修できる。ただし、年度終了時の在学期間により、着手条件が異なる。

## 「卒業研究着手条件(対象:年度終了時の在学期間3年以上)」

年度終了時に以下の条件をすべて満たすものは卒業研究に着手できる。

- 1) 卒業研究1年を加えて学則にある修業年限を満たす期間以上在学していること。
- 2) 全学教育科目に関して、卒業に必要な単位をすべて修得していること。
- 3) 学部基盤科目に関して、卒業に必要な単位をすべて修得していること。
- 4) 専門科目を,必修14単位以上を含み,53単位以上修得していること。
- 5) GPA が 2.0 以上であること。
- 6) 学生教育研究災害傷害保険に少なくとも加入期間1年を残して加入していなければならない。

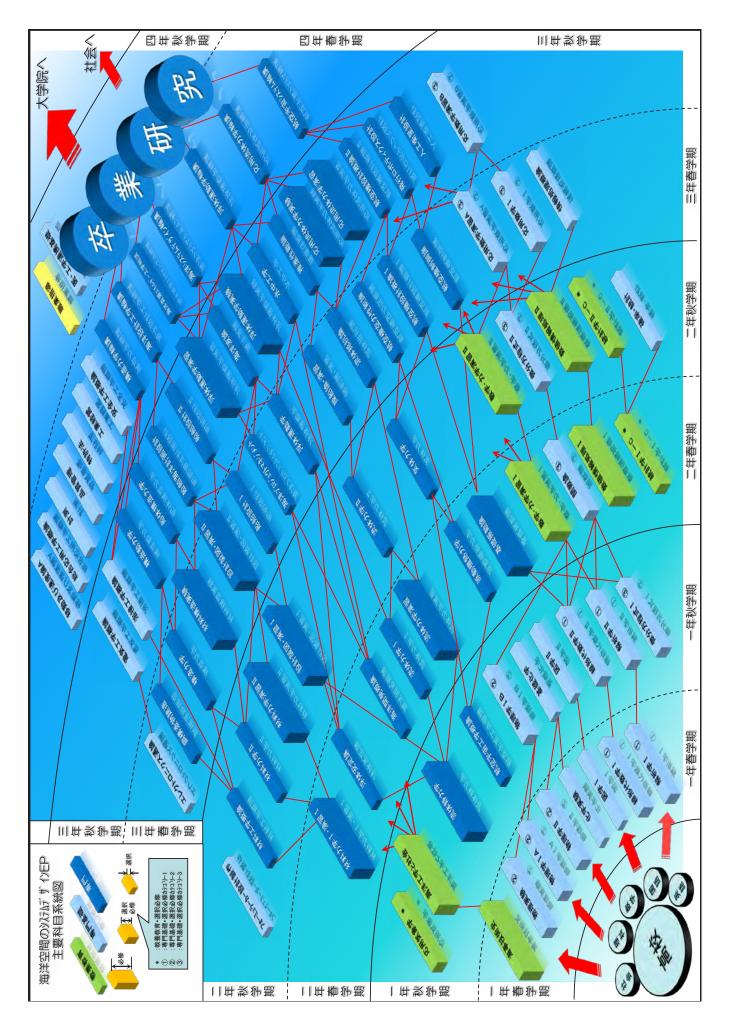
卒業研究着手資格者は年度の初めに審査の上公表する。研究室の配属については本人の希望と GPT(Grade Point Total)すなわち GPA の分子にあたる「(GP×単位数)の総和」を考慮して決定する。

### 「早期卒業希望者の卒業研究着手条件(対象:年度終了時の在学期間3年未満)」

年度終了時に以下の条件を全て満たしているものは、次年度に通常年次履修科目に加えて卒業研究を履修することができる。 これにより、卒業資格の全ての単位要件を満たした場合は、3年次終了時およびそれ以降に早期卒業ができる。

- 1) 年度終了時に、通常の卒業研究着手条件2)、3)および6)を満たしていること。
- 2) 専門科目については、3 年次の必修科目を除く必修 14 単位を含み、40 単位以上修得していること(配当年次にかかわらず計画的に履修すること)。
- 3) GPA が 4.1 以上であること。また 3 年次を通じてこの GPA を維持することが望ましい。

早期卒業研究着手資格者は希望があった者について年度の初めに審査の上公表する。研究室の配属については本人の希望と GPT(Grade Point Total)すなわち GPA の分子にあたる「(GP×単位数)の総和」を考慮して決定する。なお、卒業研究は3年次通年で実施する。


# 授 業 科 目 一 覧

|        |          |                 |   |                 |          | 単位                                 | <br>数          |               |
|--------|----------|-----------------|---|-----------------|----------|------------------------------------|----------------|---------------|
|        | -目       | <br>  授業科目の名称   |   | <br>  配当年次      | 必        | 選択                                 | 選              | -<br>備 考      |
| 区      | 分        | 及來行口の口仰         |   |                 | 後        | <br> <br> <br> <br> <br> <br> <br> | 択              | , mu          |
|        |          | <u> </u><br>全 学 | 教 | <u> </u><br>育 科 |          |                                    | ., ,           |               |
|        |          | 海事技術史           | 教 | 1 春             | 2        |                                    |                |               |
| 全      |          | 海洋工学と社会         |   | 1 秋             | 2        |                                    |                |               |
| 全学教育科目 | -<br>[   | 応用気象学           |   | 1 秋             |          | 2                                  |                |               |
|        | <u> </u> | 統計学 I -C        |   | 2 春             |          | 2                                  |                | 6 単位中 4 単位以上  |
| l ii   |          | 統計学II-C         |   | 2 秋             |          | 2                                  |                |               |
|        |          | 学部              | 教 | 育科              | E        | <u> </u>                           |                |               |
| 基      |          | 数学·力学演習 I ※     |   | 2 春             | 1        |                                    |                |               |
| 礎      |          | 数値情報処理 I ※      |   | 2 春             | 2        |                                    | <del> </del> - | -             |
| 習      |          | 数学・力学演習Ⅱ※       |   | 2 秋             | 1        |                                    | <del> </del>   | -             |
| 基礎演習科目 | +        | 数値情報処理Ⅱ ※       |   | 2 秋             | 2        |                                    | <del> </del>   | 1             |
|        |          | 解析学I            |   | 1 春             | _        | 2                                  |                |               |
|        | カテゴリ     | 線形代数学 I         |   | 1 春             |          | 2                                  |                | 1             |
|        | ゴニ       | 解析学Ⅱ            |   | 1 秋             | }        | 2                                  | <del> </del> - | 8 単位中 6 単位以上  |
|        | 1        | 線形代数学Ⅱ          |   | 1 秋             | ·        | 2                                  |                | -             |
|        |          | 物理学IA           |   | 1 春             |          | 2                                  |                |               |
|        | カテゴリ2    |                 |   | 1 春             |          | 2                                  |                | -             |
|        | Ĭ        | 物理実験            |   | 1 春             |          | 1                                  | l              | 7 単位中 5 単位以上  |
|        | 2        |                 |   | 1 秋             |          | 2                                  | <b> </b>       | _             |
|        |          | 微分方程式I          |   | 1 秋             |          | 2                                  |                |               |
|        |          |                 |   | 2 春             |          | 2                                  |                |               |
|        | カテゴリ     |                 |   | 2 秋             | }        | 2                                  |                |               |
|        | Ţ        | <br>- 応用数学      |   | 3 春             |          | 2                                  |                | 12 単位中 6 単位以上 |
| 専      | 3        | 応用数学演習A         |   | 3 春             |          | 2                                  |                | 1             |
|        |          | 応用数学演習B         |   | 3 秋             |          | 2                                  |                | 1             |
| 門      |          | 図学I             |   | 1 春             |          |                                    | 2              |               |
| 基      |          | 化学実験            |   | 1 春             |          |                                    | 1              | 1             |
| 礎      |          | 図学Ⅱ             |   | 1 秋             | <b></b>  | <b> </b>                           | 2              | -             |
| 科      |          |                 |   | 1 秋             |          |                                    | 2              | -             |
| 目      |          | 在率·統計           |   | 2 秋             | ļ        |                                    | 2              | -             |
|        |          | エレクトロニクス通論      |   | 3 春             | ļ        |                                    | 2              | -             |
|        |          | 情報処理概論          |   | 3 春             | ļ        |                                    | 2              | -             |
|        |          | 電気工学概論          |   | 3 秋             | L        |                                    | 2              | -             |
|        |          | 溶接工学概論          |   | 3 秋             | ļ        |                                    | 2              | -             |
|        |          | 計測              |   | 4 春             | ļ        |                                    | 2              | -             |
|        |          | 移動および速度論A       |   | 4 春             | ļ        |                                    | 2              | -             |
|        |          | 知的財産権           |   | 4 春             | ļ        |                                    | 2              | -             |
|        |          | 品質管理            |   | 4 春             | L        |                                    | 2              | -             |
|        |          |                 |   | 4春              | ļ        |                                    | 2              | -             |
|        |          | 安全工学概論          |   | 4春              | <u> </u> |                                    | 2              | -             |
|        |          | 総合応用工学概論        |   | 4 春             | }        |                                    | 2              | -             |
|        |          | 医•工学連携基礎        |   | 4 秋             | }        | ļ                                  | 2              | -             |
|        |          |                 |   | 1 1/\           | L        | L                                  |                | J             |

|        | フォーミュラーカー設計製作  | 2•3•4 秋 |              | 2 | ]                                                 |
|--------|----------------|---------|--------------|---|---------------------------------------------------|
|        | 自然環境リスク共生概論 B  | 14      |              | 1 |                                                   |
| 教職関連科目 |                | 1 春     |              | 2 | 卒業に必要な単位に算入<br>しない。<br>履修上限から除外する。<br>GPA に算入しない。 |
|        | 生物科学Ⅱ          | 1 秋     |              | 2 |                                                   |
|        | 生態学遠隔地         | 23      |              | 2 |                                                   |
|        | フィールドワーク       |         |              |   |                                                   |
|        | 海洋学フィールドワーク    | 23      |              | 2 |                                                   |
|        | 生態学実習 I        | 3①      |              | 1 |                                                   |
|        | 生態学実習 II       | 3②      |              | 1 |                                                   |
|        | 地球科学           | 1 春     |              | 2 |                                                   |
|        | 地球システム論 I      | 24      |              | 1 |                                                   |
|        | 地球システム論Ⅱ       | 2⑤      |              | 1 |                                                   |
|        | 地球科学実験         | 1 春     |              | 2 |                                                   |
|        | 地質学遠隔地フィールドワーク | 3 春     |              | 2 |                                                   |
| 専門科目   | 流体静力学          | 1 秋     | 2            |   |                                                   |
|        | 航空宇宙工学概論       | 1 秋     | 2            |   |                                                   |
|        | 材料力学·演習 I      | 2 春     | 3            |   | <u> </u>                                          |
|        | 基礎振動論          | 2 春     | 2            |   |                                                   |
|        | 流体力学演習<br>     | 2 春     | 1            |   |                                                   |
|        | 海洋開発概論         | 2 春     |              | 2 |                                                   |
|        | 流体力学 I<br>     | 2 春     |              | 2 |                                                   |
|        | 浮体安定論<br>      | 2 春     |              | 2 |                                                   |
|        | 原動機熱力学         | 2 春     |              | 2 |                                                   |
|        | 設計製図・演習 I      | 2 秋     | 3            |   |                                                   |
|        | 材料力学演習Ⅱ<br>    | 2 秋     | 1            |   |                                                   |
|        | 材料工学概論         | 2 秋     |              | 2 |                                                   |
|        | 気体力学<br>       | 2 秋     |              | 2 |                                                   |
|        | 流体力学Ⅱ          | 2 秋     |              | 2 |                                                   |
|        | 材料力学Ⅱ          | 2 秋     |              | 2 |                                                   |
|        | 設計製図・演習Ⅱ       | 3 春     | 2            |   |                                                   |
|        | 材料•構造実験        | 3 春     | 1            |   |                                                   |
|        | 浮体運動学          | 3 春     |              | 2 |                                                   |
|        | 航空機制御論         | 3 春     | <del> </del> | 2 |                                                   |
|        | 構造力学           | 3 春     | <b></b>      | 2 |                                                   |
|        | 流体抵抗論          | 3 春     | <u> </u>     | 2 |                                                   |
|        | 船舶設計 I         | 3 春     | <del></del>  | 2 |                                                   |
|        | 航空機空力性能論       | 3 春     |              | 2 |                                                   |
|        | 鋼構造物建造         | 3 春     |              | 2 |                                                   |
|        | 航空機設計概論 I      | 3 春     | ·            | 2 |                                                   |
|        | 操船論・演習         | 3 春     | <del> </del> | 2 |                                                   |
|        | 海洋プロジェクトマネジメント | 3 春     |              | 2 |                                                   |
|        | 応用流体力学演習<br>   | 3 秋     | 1            |   |                                                   |
|        | 応用流体力学実験       | 3 秋     | 1            |   |                                                   |
|        | 浮体運動学演習        | 3 秋     | 1            |   |                                                   |
|        | 浮体運動学実験        | 3 秋     | 1            |   |                                                   |
|        | 推進性能論          | 3 秋     |              | 2 |                                                   |
|        | 海洋波論           | 3 秋     |              | 2 |                                                   |
|        | 水中工学           | 3 秋     |              | 2 |                                                   |

|  | 構造動力学         | 3 秋  |   | 2 |  |
|--|---------------|------|---|---|--|
|  | 船体構造力学        | 3 秋  |   | 2 |  |
|  | 船舶設計Ⅱ         | 3 秋  |   | 2 |  |
|  | 人工衛星設計        | 3 秋  |   | 2 |  |
|  | 飛行ロボティクス設計    | 3 秋  |   | 2 |  |
|  | 船舶海洋計画設計      | 3 秋  |   | 2 |  |
|  | 航空機設計概論Ⅱ      | 3 秋  |   | 2 |  |
|  | 応用流体力学輪講      | 4 春  |   | 1 |  |
|  | 構造力学輪講        | 4 春  |   | 1 |  |
|  | 海洋設計工学輪講      | 4 春  |   | 1 |  |
|  | 海洋システムデザイン輪講  | 4 春  |   | 1 |  |
|  | 海洋資源エネルギー工学輪講 | 4 春  |   | 1 |  |
|  | 浮体運動学輪講       | 4 春  |   | 1 |  |
|  | 航空宇宙システム輪講    | 4 春  |   | 1 |  |
|  | 卒業研究          | 4 通年 | 5 |   |  |

学部教育科目のうち、※印を付した科目は、本 EP 開設科目であり、他 EP の学生は履修できない。 丸数字はタームを表す

